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Abstract

The dynamic behavior of a piecewise-nonlinear mechanical oscillator with parametric and external
excitations is investigated. The viscously damped single-degree-of-freedom oscillator is subjected to a
periodically time-varying, piecewise-nonlinear restoring function defined by a clearance surrounded by
continuously nonlinear (quadratic and cubic) regions. Typical applications represented by this oscillator are
highlighted. A multi-term harmonic balance formulation is used in conjunction with discrete Fourier
transforms and a parametric continuation scheme to determine steady-state period-1 motions of the system
due to both parametric and external excitations. The accuracy of the analytical solutions is demonstrated by
comparing them to direct numerical integration solutions. Floquet theory is applied to determine the stability
of the steady-state harmonic balance solutions. At the end, detailed parametric studies are presented to
quantify the combined influence of clearance, quadratic and cubic nonlinearities within reasonable ranges of all
other system parameters. A comparison between time-varying and time-invariant systems is also provided to
demonstrate the influence of the parametric and external excitations on a piecewise-nonlinear system.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, the period-1 response of a single-degree-of-freedom (SDOF) oscillator with a unit
mass is studied. The oscillator is subjected to viscous damping and a complex restoring function
see front matter r 2004 Elsevier Ltd. All rights reserved.
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g½uðtÞ� that is formed by a combination of clearance and continuous nonlinearities. The system is
excited by a periodically time-varying stiffness wðtÞ and an external force f ðtÞ acting directly on
the unit mass. In dimensionless form, the equation of motion for the oscillator is given by

€uðtÞ þ 2z _uðtÞ þ wðtÞg½uðtÞ� ¼ f ðtÞ; (1)

where t is the dimensionless time, an overdot denotes differentiation with respect to t; uðtÞ is the
displacement of the unit mass, and z is the viscous damping ratio. In Eq. (1), the piecewise-
nonlinear (PN) function g½uðtÞ� governs the dynamics of several mechanical systems, such as a
splined disk–shaft interface [1], a sphere–plane contact [2–6], a rotor supported by rolling element
bearings [7,8], spur gear pairs, and certain types of clutches and couplings.
Another critical feature of Eq. (1) is the periodically time-varying stiffness wðtÞ: In the case of a

rolling element bearing, the total number of rolling elements (balls or cylindrical rollers) in contact
fluctuates between two integers P ¼ m and m þ 1 as the roller cage rotates. Similarly, in a spur
gear pair, the overall number of loaded tooth pairs typically alternates between 1 and 2. In both
applications, such rotation-dependent (and hence time-dependent) changes cause the overall
stiffness at the interface to vary periodically, which is represented by wðtÞ in Eq. (1).
Previous published studies on similar systems can be classified into two groups based on the

stiffness function considered: (1) time-invariant (TI) systems with wðtÞ ¼ 1 as in sphere–plane and
spline joint examples, and (2) time-varying (TV) systems with periodic wðtÞ as in the gear pair and
rolling element bearing examples. In addition, based on the form of g½uðtÞ�; previous models fall
into three categories: (1) continuously nonlinear (CN) with no clearance, (2) piecewise-linear (PL),
and (3) piecewise-nonlinear (PN). By combining these two classifications, six individual groups
can be formed, each of which uses a special version of Eq. (1) as listed in Table 1. In this table, a
general PN form of g½uðtÞ� is considered as

g½uðtÞ� ¼

P3
i¼1

ai½uðtÞ � 1�i; uðtÞ41;

0; �1puðtÞp1;

P3
i¼1

ð�1Þi�1ai½uðtÞ þ 1�i; uðtÞo� 1:

8>>>>><
>>>>>:

(2)

As Fig. 1 shows for different values of a2 and a3; g½uðtÞ� consists of three segments: a clearance
(dead-zone) segment for uðtÞ 2 ½�1; 1�; and two continuously nonlinear segments for uðtÞ41 and
uðtÞo� 1: The nonlinear segments are defined by a linear stiffness component of slope a1; a
quadratic nonlinearity term with coefficient a2; and a cubic nonlinearity term with coefficient a3:
As listed in Table 1, continuously nonlinear models (continuous nonlinear time-invariant

(CNTI) and continuous nonlinear time-varying (CNTV)) have been studied extensively by using
both numerical methods and well-established analytical techniques such as perturbation methods
(e.g. Refs. [9–18]). Both softening- and hardening-type behavior were predicted for such systems
as well as subharmonic, superharmonic and combination resonances. A full array of nonlinear
phenomena were predicted and described thoroughly for such systems. On the other hand, PL
systems (piecewise-linear time-invariant (PLTI) and piecewise-linear time-varying (PLTV)) have
also been the focus of many studies, which demonstrated softening-type resonance peaks due
to contact loss, and defined the conditions for the occurring of single- and double-sided impacts
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Fig. 1. Examples of restoring function g½uðtÞ� given a1 ¼ 1; and (- - -) a2 ¼ 0:2; a3 ¼ �0:1; (——) a2 ¼ a3 ¼ 0; and
(- 	 - 	 ) a2 ¼ 0:2; a3 ¼ 0:

Table 1

Different limiting cases of Eq. (1) with corresponding forms of g½uðtÞ� and examples of previous studies

Model type Abbreviation wðtÞ g½uðtÞ� Example Refs.

Continuous nonlinear, time-invariant CNTI Constant Pn

i¼0

aiu
i [9–13]

Continuous nonlinear, time-varying CNTV Periodic [14–18]

Piecewise-linear, time-invariant PLTI Constant u � 1; u41;

0; �1pup1;

u þ 1; uo� 1:

8><
>:

[19–30]

Piecewise-linear, time-varying PLTV Periodic [31–41]

Piecewise-nonlinear, time-invariant PNTI Constant Pn

i¼1

aiðu � 1Þi; u41;

0; �1pup1;Pn

i¼1

ð�1Þi�1aiðu þ 1Þi; uo� 1:

8>>>>><
>>>>>:

[2–6,42–47]

Piecewise-nonlinear, time-varying PNTV Periodic —

Q. Ma, A. Kahraman / Journal of Sound and Vibration 284 (2005) 893–914 895
(SSI and DSI) [19–41]. Moreover, for PLTV systems, it was shown that the regions of unstable
solutions are bounded by stable subharmonic motions as a result of separations. Some of these
predictions were also shown to match the experimental data well [31,32].
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1.1. Objectives and scope

While a significant number of studies were performed on CN and PL systems with or without
time-varying parameters, a limited number of published studies exist for PN systems, which
combine both continuous and clearance nonlinearities. Most of these studies fall into the PNTI
category [1–6,42–47] with constant stiffness coefficient. These studies mostly used numerical
techniques with the exception of Refs. [46,47]. Meanwhile, the dynamic behavior of PNTV
systems, as defined by Eqs. (1) and (2), is yet to be studied in detail. Accordingly, this paper
focuses on the dynamic response of a SDOF PNTV oscillator governed by Eq. (1). Specific
objectives are: (1) obtain the steady-state response analytically by using a multi-term harmonic
balance method (HBM) in conjunction with discrete Fourier transforms (DFT), (2) demonstrate
the accuracy of harmonic balance solutions by comparison to numerical integration results, (3)
describe the impact of continuous nonlinearities of different types and magnitudes on the steady-
state response of the PNTV systems, (4) quantify the influence of time-varying stiffness on the
response through the comparison between the solutions of PNTI and PNTV systems, and (5)
describe the effect of key system parameters such as damping ratio z; alternating stiffness
amplitude, preload f 1; and alternating external force amplitude on the dynamic response.
A parametric continuation scheme will be utilized for facilitating the solutions while passing

through the turning points. Floquet theory will be employed for examining the stability of the
steady-state motions. While the model proposed will be capable of finding period-Z subharmonic
motions ðZ41Þ as well, only period-1 motions are presented in this paper. A companion paper will
investigate subharmonic motions exhibited by the same system in detail [48].
2. Multi-term period-1 response to periodic excitations

A general method for obtaining steady-state period-1 solutions of Eq. (1) is presented in this
section. This method combines a multi-term HBM formulation with DFT, which was applied to
PL systems successfully [28–32]. Here wðtÞ and f ðtÞ are written in the form of truncated Fourier
series as

wðtÞ ¼ 1þ
XK

k¼1

½w2k cosðkLtÞ þ w2kþ1 sinðkLtÞ�; (3a)

f ðtÞ ¼ f 1 þ
XM

m¼1

½f 2m cosðmLtÞ þ f 2mþ1 sinðmLtÞ�; (3b)

where L is the dimensionless fundamental excitation frequency. w1 ¼ 1 is the mean component of
the stiffness function, and w2k and w2kþ1 are the kth harmonic amplitudes of wðtÞ: f 1 is the mean
load (preload) applied to the unit mass, and f 2m and f 2mþ1 are the mth harmonic amplitudes of f ðtÞ:
k and m are integer valued harmonic indices. By defining y ¼ Lt; Eq. (1) becomes

L2 d2uðyÞ

d2y
þ 2zL

duðyÞ
dy

þ wðyÞg½uðyÞ� ¼ f ðyÞ: (4)
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The unknown steady-state period-1 response uðyÞ and the PN restoring function g½uðyÞ� can be
expressed in Fourier series form as well:

uðyÞ ¼ u1 þ
XR

r¼1

½u2r cosðryÞ þ u2rþ1 sinðryÞ�; (5)

g½uðyÞ� ¼ v1 þ
XR

r¼1

½v2r cosðryÞ þ v2rþ1 sinðryÞ�: (6)

While representing g½uðyÞ� in Fourier series form seem unreasonable, the use of discrete Fourier
transforms in determining its coefficients captures its piecewise properties properly [28–30] as it
will be done later. By substituting Eqs. (3), (5) and (6) into Eq. (4) and enforcing harmonic
balance, a vector equation S ¼ 0 is obtained in the following form:

S1 ¼ v1 � f 1 þ
1

2

XK

k¼1

½w2kv2k þ w2kþ1v2kþ1� ¼ 0; (7a)

S2r ¼ � L2r2u2r þ 2zLru2rþ1 þ v2r þ v1w2r � f 2r

þ
1

2

XK

k¼1

w2k½v2ðk�rÞ þ v2ðkþrÞ þ v2ðr�kÞ�

þ
1

2

XK

k¼1

w2kþ1½v2ðk�rÞþ1 þ v2ðkþrÞþ1 � v2ðr�kÞþ1� ¼ 0; r 2 ½1;R�; ð7bÞ

S2rþ1 ¼ � L2r2u2rþ1 � 2zLru2r þ v2rþ1 þ v1w2rþ1 � f 2rþ1

þ
1

2

XK

k¼1

w2k½�v2ðk�rÞþ1 þ v2ðkþrÞþ1 þ v2ðr�kÞþ1�

þ
1

2

XK

k¼1

w2kþ1½v2ðk�rÞ � v2ðkþrÞ þ v2ðr�kÞ� ¼ 0; r 2 ½1;R�: ð7cÞ

The coefficients vi of g½uðyÞ� can be expressed in terms of unknown Fourier coefficients of the
response u ¼ ½u1 u2 u3 . . . u2R u2Rþ1�

T by utilizing the DFT [28,29,31,32]. The values of uðyÞ at
discrete values of y ¼ nh are

un ¼ u1 þ
XR

r¼1

u2r cos
2prn

N

� �
þ u2rþ1 sin

2prn

N

� �	 

; n 2 ½0;N � 1�; (8a)

where h ¼ 2p=ðNLÞ and NX2R: Using Eq. (2), the nth discrete value of g½uðyÞ� is given as

gn ¼

P3
i¼1

aiðun � 1Þi; un41;

0; junjp1;

P3
i¼1

ð�1Þi�1aiðun þ 1Þi; uno� 1

8>>>>><
>>>>>:

(8b)



ARTICLE IN PRESS

Q. Ma, A. Kahraman / Journal of Sound and Vibration 284 (2005) 893–914898
and the Fourier coefficients of g½uðyÞ� are calculated by taking the inverse DFT of Eq. (8) as

v1 ¼
1

N

XN�1

n¼0

gn; v2r ¼
2

N

XN�1

n¼0

gn cos
2prn

N
; v2rþ1 ¼

2

N

XN�1

n¼0

gn sin
2prn

N
: (9a2c)

Having vi; the vector equation S ¼ 0 can be solved for u by employing the Newton–Raphson
method as

uðmÞ ¼ uðm�1Þ � ½J�1�ðm�1ÞSðm�1Þ; (10)

where the value of uðmÞ at the mth iteration is obtained from the values of Sðm�1Þ and uðm�1Þ; and J

is the Jacobian matrix. The Newton–Raphson iteration starts with an initial guess u
(0) and a

control parameter that is chosen as L; and the process is repeated until the steady-state solution
uðmÞ converges within a predefined error limit. Then the control parameter is set to the next value
of interest by increasing or decreasing L until a turning point impedes continuation. In order to
find the location of the turning point, the artificial-parameter generic homotopy method is utilized
[49,50]. The iteration process is continued by using the value of the turning point as the new initial
guess of the control parameter in the opposite incremental direction.
The stability of the steady-state response is determined by using Floquet theory [51].

Introducing a small variation DuðtÞ to the periodic solution uoðtÞ ¼ uoðtþ TÞ where T is the least
period of uðtÞ; the following variational equation is obtained:

D €u þ 2zD _u þCðtÞ ~g½uoðtÞ�Du ¼ 0; (11a)

~g½uoðtÞ� ¼

P3
i¼1

iai½uo � 1�i�1; uo41;

0; juojp1;

P3
i¼1

½�1�i�1iai½uo þ 1�i�1; uoo� 1:

8>>>>><
>>>>>:

(11b)

Defining y ¼ ½DuðtÞ D _uðtÞ�T; Eq. (11a) is written in state-space form as _yðtÞ ¼ HðtÞyðtÞ; where
HðtÞ ¼ Hðtþ TÞ is the periodic state matrix. The variation of DuðtÞ during one minimal period
can be determined by examining the eigenvalues of the monodromy matrix U ¼ YðTÞ; and U is
obtained by solving _YðtÞ ¼ HðtÞYðtÞ given initial condition Yð0Þ ¼ I2; where I2 is an identity
matrix of dimension 2. In this study, U is computed by using the approximate method developed
by Hsu and Cheng [52]. Finally, the local stability of uoðtÞ is determined by examining the
eigenvalues of U: The solution is stable if the modulus of the eigenvalues is less than unity, and
unstable otherwise.

2.1. Comparison to numerical integration results

A typical forced response is illustrated in Fig. 2 for an oscillator having a periodic stiffness
function with w3 ¼ 0:3; w5 ¼ 0:15; w7 ¼ 0:1 (K ¼ 3), all other wi ¼ 0; and z ¼ 0:05: Here,
the root-mean-square (rms) amplitude of the steady state response is defined as

urms ¼
PR

r¼1ðu
2
2r þ u22rþ1Þ

h i1=2
: The piecewise-nonlinear function g contains both quadratic and
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Fig. 2. (a) urms and (b) u1 values of forced response (R ¼ 6) as a function of dimensionless frequency L given a2 ¼ 0:1;
a3 ¼ 0:2; f 1 ¼ 0:5; f i ¼ 0 ðiX2Þ; w3 ¼ 0:3; w5 ¼ 0:15; w7 ¼ 0:1 (K ¼ 3), all other wi ¼ 0; and z ¼ 0:05: (—) stable HBM

solutions, (– –) unstable HBM solutions, and (&) numerical integration solutions.
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cubic coefficients a2 ¼ 0:1; a3 ¼ 0:2; in addition to a linear term a1 ¼ 1: The oscillator is subjected
to a mean load f 1 ¼ 0:5 with no alternating external force (f i ¼ 0; i ¼ 2; 3; . . .). Fig. 2(a) shows the
urms values of both stable and unstable HBM solutions as a function of dimensionless frequency
L: These solutions were obtained by considering six terms (R ¼ 6) in Eq. (6). In addition, urms
obtained by direct numerical integration of Eq. (1) using backward differentiation formulas is
shown in Fig. 2(a). Within each period, more than 2000 points were considered in the numerical
integration to represent the transition times between the piecewise solution regimes reasonably
well. A very good agreement is observed between the solutions from both methods. Similarly, the
values of u1 predicted by HBM and the numerical integration method compare well in Fig. 2(b)
for the same case, further suggesting that the HBM solutions are indeed correct.
It is noted from Fig. 2(a) that, at L � 0:9; the stable (lower branch) solution loses its stability,

causing a jump-up to another stable (upper branch) solution. Further examining these solutions in
time domain indicates that the lower branch solution is such that uðtÞ41 for all t; which suggests
that this motion is contained at the right piecewise segment of g½uðtÞ�; and the clearance
nonlinearity has no influence on this motion. Using the same terminology introduced by
Comparin and Singh [25], such motions will be called no-impact (NI) motions. NI motions will
always take place in the right piecewise segment since the external force has a mean (preload)
component forcing a contact in that segment. Similarly, uðtÞ4� 1 for the upper branch solutions
in Fig. 2(a) for L from 1.25 back to 0.75, indicating that separation takes place. Here these
motions are named as SSI motions that demonstrate a typical softening-type behavior due to
contact loss. Finally, as the frequency is reduced at the upper branch, SSI motions lose their
stability at L � 0:75: Either a jump-down to the lower branch NI motion or a jump-up to another
stable motion is possible. These higher amplitude motions are such that uðtÞo� 1 for certain t;
which indicates that these motions have back contacts following separations. The mass travels
through the entire clearance region to initiate contact at the left piecewise segment. These motions
will be called DSI motions.
3. Parametric studies

The parameter set for Eq. (1) is given as P 2 ½a1; a2; a3; f 1; f i; wi; z; L�: Since the focus of the
study is on the influence of clearance, quadratic (a2), and cubic (a3) nonlinearities, three cases are
considered: (1) oscillators having clearance and cubic nonlinearities: a1 ¼ 1; a2 ¼ 0; and variable
a3; (2) oscillators having clearance and quadratic nonlinearities: a1 ¼ 1; a3 ¼ 0; and variable a2;
and (3) oscillators having all three types of nonlinearities: a1 ¼ 1; and variable a2 and a3:
Moreover, to limit the parametric study to a reasonable size, the influences of system parameters
f 1; f i; wi and z on the steady-state response are demonstrated only for case (1) in which a1 ¼ 1;
a2 ¼ 0; and a3 has different values. The range of dimensionless frequency is defined as L 2 ½0; 1:5�:
This range covers all primary and superharmonic resonance peaks of interest. Here the primary
resonance frequency represents the undamped natural frequency of the corresponding linear
system at L ¼ 1 while the superharmonic resonances at L ¼ 1=k ðkX2Þ are due to the nonlinear
effects [50]. In Eq. (6), the maximum index of Fourier series is chosen as R ¼ 6; which has
sufficient accuracy for the analysis, as shown in Fig. 2. Only u1 and urms values are used to
represent uðtÞ since the presentation of all harmonic amplitudes is not feasible. In all results
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presented in the figures of the following sections, solid and dashed lines represent the stable and
unstable period-1 motions, respectively.

3.1. a1 ¼ 1; a2 ¼ 0 and variable a3

In this case, g½uðtÞ� is a PN function, which is formed by two nonlinear segments that are
defined by a linear term a1 ¼ 1 and a cubic nonlinear a3 term. The value of a3 is varied to obtain
softening (a3o0) and hardening (a340) types of cubic nonlinearities. The case of a3 ¼ 0 is also
included to represent the corresponding PL system.
The effect of f 1 on the steady-state forced response for a3a0 is illustrated in Figs. 3 and 4 for

f i ¼ 0 ðiX2Þ; w3 ¼ 0:3; z ¼ 0:05; a1 ¼ 1; a2 ¼ 0: The values of a3 and f 1 are varied, and the
resultant changes on urms and u1 of the system response are observed. In Figs. 3(a) and 4(a)
for f 1 ¼ 0:25; regardless of the value of a3; the motion is nearly linear for most L except the
range near L ¼ 1; where a softening-type nonlinear response is formed by SSI solutions
Fig. 3. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0.0, 0.2 and 0.4, given f i ¼ 0 (iX2), w3 ¼ 0:3; z ¼ 0:05
for (a) f 1 ¼ 0:25; (b) f 1 ¼ 0:5; (c) f 1 ¼ 0:75; and (d) f 1 ¼ 1:0: (—) stable and (– –) unstable HBM solutions.
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Fig. 4. u1 of the same oscillator as that in Fig. 3: (a) f 1 ¼ 0:25; (b) f 1 ¼ 0:5; (c) f 1 ¼ 0:75; and (d) f 1 ¼ 1:0: (—) stable

and (– –) unstable HBM solutions.
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corresponding to the primary resonance due to internal harmonic excitation w3: Additionally,
the responses for a3a0 and a3 ¼ 0 are quite close because of the fact that the vibrations take
place in a portion of g½uðtÞ� where the cubic nonlinearity is not significant enough. For instance,
at L ¼ 1 where u1 � 1:15 and urms � 0:35; uðtÞ varies roughly between 0.8 and 1.5, and
g½uðtÞ� is nearly linear within this range. However, with the increasing of f 1; the value of u1 is
enlarged as well, which moves the range of uðtÞ to the right in Fig. 1, where cubic nonlinearity
becomes more important. Thus, the behavior of the oscillator is changed significantly as shown in
Figs. 3(b) and 4(b), which have the same parameters as those of Figs. 3(a) and 4(a), except
f 1 ¼ 0:50:
The effect of a3 in Figs. 3 and 4 is such that a positive a3 (hardening) shifts the response to the

right and reduces the vibration amplitudes slightly while the overall shape of the motion remains
similar to the case of a3 ¼ 0: Meanwhile, a negative a3 (softening) causes the primary resonance
peak to shift to the left, and the vibration amplitudes may increase significantly on the upper
branch before a jump-down takes place. In Figs. 3(c,d) and 4(c,d) for f 1 ¼ 0:75 and 1.0,
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respectively, the same effect of a hardening a3 is observed except the changes in resonance
frequencies and vibration amplitudes become more severe. The response for a3 ¼ �0:1 differs
drastically. In Fig. 3(c), the primary resonance peak is at nearly L ¼ 0:8; and the upper branch
solution loses its stability at about L ¼ 0:7: There is no stable period-1 motion for L 2 ½0:63; 0:7�;
in which stable subharmonic motions exist [48]. The superharmonic resonance peak (at half the
primary resonance frequency) becomes larger, and exhibits an SSI solution. Finally, when f 1 ¼

1:0 in Figs. 3(d) and 4(d), the PL system for a3 ¼ 0 displays DSI motions at the end of the SSI
branch. These DSI motions are eliminated for a340: For a3 ¼ �0:1; there is no stable period-1
motion for Lo0:82: In summary, the behavior displayed in Figs. 3 and 4 indicates that the impact
of cubic nonlinearity depends heavily on the value of the preload. A larger f 1 makes the influence
of a3 more significant. On the contrary, a PL approximation for g½uðtÞ�might be sufficient when f 1
is small regardless of L:
The effect of damping ratio is illustrated in Fig. 5 for the same parameters as in Fig. 3 except

w3 ¼ 0:3; and z ¼ 0:025; 0.05, 0.075, and 0.1. As expected, a lower z value results in larger urms
Fig. 5. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0.0, 0.2 and 0.4, given f i ¼ 0 (iX2), f 1 ¼ 0:5; w3 ¼ 0:3
for (a) z ¼ 0:025; (b) z ¼ 0:05; (c) z ¼ 0:075; and (d) z ¼ 0:1 (—). stable and (– –) unstable HBM solutions.
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amplitudes as well as several types of nonlinear behaviors including SSI and DSI motions and
superharmonic resonances. For instance, in Fig. 5(a) for z ¼ 0:025; all response curves for a3X0
show hardening-type DSI motions at the end of large-amplitude softening-type SSI motions. For
a3 ¼ �0:1; on the other hand, DSI motions do not exist while the SSI motions have even higher
amplitudes. Further increasing the value of z; first DSI motions are eliminated, and then the SSI
amplitudes are reduced significantly. For instance, motions are mostly NI type for z ¼ 0:1 as
shown in Fig. 5(d).
Fig. 6 demonstrates the combined influence of a3 and wðtÞ on urms, where a1 ¼ 1; a2 ¼ 0 and

a3 ¼ �0:1; 0; 0:2 and 0.4, z ¼ 0:05; f 1 ¼ 0:5; and all other f i ¼ 0: The stiffness function wðtÞ is
considered to be harmonic with amplitude w3 ¼ 0:1; 0.2, 0.3 and 0.4. Fig. 6 indicates that the
magnitude of urms gets larger when w3 is increased. When w3 ¼ 0:1; all response curves are
approximately linear with no impacts as shown in Fig. 6(a). This agrees with previous studies on
PL systems, which stated that separations could not occur if w3p2z [31,32]. When w3 ¼ 0:2;
softening-type nonlinear curves from SSI motions are introduced. Increasing a3 reduces the
Fig. 6. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0.0, 0.2 and 0.4, given f i ¼ 0 (iX2), f 1 ¼ 0:5; z ¼ 0:05
for (a) w3 ¼ 0:1; (b) w3 ¼ 0:2; (c) w3 ¼ 0:3; and (d) w3 ¼ 0:4: (—) stable and (– –) unstable HBM solutions.
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amplitude of vibrations, and moves the resonance peaks to higher frequencies. This is also true
with larger w3 values as in Figs. 6(c,d) for w3 ¼ 0:3 and 0.4, respectively. When w3 ¼ 0:4; the PL
system (a3 ¼ 0) exhibits DSI motions, which are eliminated when a3 ¼ 0:2 and 0.4. DSI motions
do not exist for a3 ¼ �0:1 either, and the amplitude of the superharmonic resonance (at half the
frequency of the primary resonance) peak is quite large with a slight separation.
In Fig. 7, a harmonic external excitation is considered without any stiffness fluctuations

ðwðtÞ ¼ 1Þ: The system parameters are kept the same as in Fig. 6 except z ¼ 0:05 and f 3 ¼ 0:05;
0.1, 0.2 and 0.3. For a3 ¼ 0; a good agreement with previous studies on PLTI system [26] is
obtained, in the sense that increasing f3 enlarges the amplitudes in the vicinity of the primary
resonance. In Fig. 7(b), both SSI and DSI motions are presented for f 3 ¼ 0:1: When the ratio of
f3/f1 is small, say f3/f1o0.5, no significant superharmonic resonances are evident in Fig. 7,
especially for the PL system, unlike Fig. 6 for wðtÞa0: However, when f3/f1 is large enough
(f3/f1=0.6 in Fig. 7(d)), superharmonic resonance amplitudes are increased significantly. This
suggests that not only the individual values of f1 and f3, but also their ratio f3/f1, are critical. For
Fig. 7. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0.0, 0.2 and 0.4, given wi ¼ 0 (iX2), f 1 ¼ 0:5; z ¼ 0:05
for (a) f 3 ¼ 0:05; (b) f 3 ¼ 0:1; (c) f 3 ¼ 0:2; and (d) f 3 ¼ 0:3: (—) stable and (– –) unstable HBM solutions.



ARTICLE IN PRESS

Q. Ma, A. Kahraman / Journal of Sound and Vibration 284 (2005) 893–914906
different values of f1 and f3, having the same ratio f3/f1, the response curves maintain the same
qualitative shape and primary resonances. The influence of a3 is the same as before.
In Fig. 8, harmonic internal and external excitations, wðtÞ and f ðtÞ; are applied simultaneously.

Here k ¼ m ¼ 1; and wðtÞ and f ðtÞ are in-phase. This is accomplished by considering f 3 and w3

only in Eq. (3). With w3 ¼ 0:3 kept constant, f 3 is varied from 0.01 to 0.2 in Fig. 8. For a very
small f 3; the nonlinear response in Fig. 8(a) is primarily due to w3; which can be confirmed by a
comparison with Fig. 6(c). As the value of f 3 is increased, the amplitude of response decreases first
as shown in Figs. 8(b) and (c) to a point that there are only NI motions in Fig. 8(c) for f 3 ¼ 0:1:
However, urms increases and softening-type SSI response reappears in Fig. 8(d) for f 3 ¼ 0:2: This
suggests that wðtÞ and f ðtÞ tend to cancel each other when they are in-phase. It can also be shown
for in-phase harmonic excitations that urms ¼ 0 and u1 is a constant when wi ¼ f i=f 1 ðiX2Þ
regardless of the value of ai:
An 1801 out-of-phase condition is accomplished in Fig. 9 by simply setting w3 ¼ 0:3 and

f 3 ¼ �0:01; –0.05, –0.1 and –0.2. Here two excitations act in such a way that their effects on
Fig. 8. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0:0; 0:2 and 0.4, given w3 ¼ 0:3; f 1 ¼ 0:5; z ¼ 0:05 for (a)
f 3 ¼ 0:01; (b) f 3 ¼ 0:05; (c) f 3 ¼ 0:1; and (d) f 3 ¼ 0:2: (—) stable and (– –) unstable HBM solutions.
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Fig. 9. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0:0; 0:2 and 0.4, given w3 ¼ 0:3; f 1 ¼ 0:5; z ¼ 0:05 for (a)
f 3 ¼ �0:01; (b) f 3 ¼ �0:05; (c) f 3 ¼ �0:1; and (d) f 3 ¼ �0:2: (—) stable and (– –) unstable HBM solutions.
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system response add to each other. In contrast to Fig. 8, response amplitudes are enlarged
significantly with increasing f 3: Very large DSI motions are observed in Fig. 9(d) for w3 ¼ 0:3 and
f 3 ¼ �0:2 when a3X0; and large superharmonic resonance peaks are obtained when a3 ¼ �0:1: A
similar dependence of the response on the phasing relationship between wðtÞ and f ðtÞ was
reported earlier for PL systems as well [31,32].
Next, consider the case when 2k ¼ m as shown in Fig. 10. Here, all parameters except wi and f i

ðiX2Þ are the same as those in Fig. 9. The value of w3 is kept constant at 0.3, and f 5 is varied from
0.01 to 0.2. In Fig. 10(a), the nonlinear response is mainly due to w3 since the value of f 5 is
relatively small. w2kþ1 ¼ w3 results in a primary resonance near L ¼ 1=k ¼ 1 and a super-
harmonic resonance near L ¼ 1=ð2kÞ ¼ 1

2
: Examining Figs. 10(a–d), one concludes that the

response near L ¼ 1 remains almost the same for different a3; respectively, since w3 is kept
constant, confirming that f 5 has a negligible effect near L ¼ 1: Increasing the value of f 2mþ1 ¼ f 5;
the response near L ¼ 1=m ¼ 1

2
is amplified. SSI motions appear in Fig. 10(b) for f 5 ¼ 0:05; and

DSI motions appear in Fig. 10(d) for f 5 ¼ 0:2: The effects of wðtÞ and f ðtÞ are superimposed in
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Fig. 10. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0:0; 0:2 and 0.4, given w3 ¼ 0:3; f 1 ¼ 0:5; z ¼ 0:05 for
(a) f 5 ¼ 0:01; (b) f 5 ¼ 0:05; (c) f 5 ¼ 0:1; and (d) f 5 ¼ 0:2: (—) stable and (– –) unstable HBM solutions.
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terms of primary resonances, and superharmonic activity at L ¼ 1=ð3kÞ ¼ 1
3 is increased

significantly. The effect of increasing a3 is the same as before, in terms of decreased urms and
increased primary resonance frequencies.
Fig. 11 represents the response when k ¼ 2m with all parameters the same as in Fig. 11. In this

figure, f 3 ¼ 0:05 and w5 ¼ 0:1; 0.2, 0.3 and 0.4. In line with Figs. 6(a) and 7(a), Fig. 11(a) has a
resonance peak near L ¼ 1=m ¼ 1 due to f 2mþ1 ¼ f 3; and another peak at L ¼ 1=k ¼ 1

2
due to

w2kþ1 ¼ w5: The value of w5 ¼ 0:1 is not large enough to either cause SSI motions near L ¼

1=k ¼ 1
2
or a parametric resonance near L ¼ 2=k ¼ 1: As a result, the activity near L ¼ 1 can

mostly be attributed to f 3: For the rest of the cases in Figs. 11(b–d), a larger w5 has a greater
influence on the vibration amplitudes around L ¼ 1: DSI motions appear when w5X0:2; and the
urms values increase drastically in Figs. 11(c,d) near L ¼ 1: This is because the parametric
resonance due to w5 and the primary resonance due to f 3 act near the same frequency of L ¼

2=k ¼ 1=m ¼ 1: Meanwhile, in Fig. 11(d) for w5 ¼ 0:4 superharmonic resonances are created at
L ¼ 1=ð2kÞ ¼ 1

4
and 1=ð3kÞ ¼ 1

6
as well.
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Fig. 11. urms of an oscillator with a1 ¼ 1; a2 ¼ 0 and a3 ¼ �0:1; 0.0, 0.2 and 0.4, given w3 ¼ 0:3; f 1 ¼ 0:5; z ¼ 0:05 for
(a) w5 ¼ 0:1; (b) w5 ¼ 0:2; (c) w5 ¼ 0:3; and (d) w5 ¼ 0:4: (—) stable and (– –) unstable HBM solutions.
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3.2. a1 ¼ 1; a3 ¼ 0; and variable a2

In this case, g½uðtÞ� is defined by a constant linear term a1 ¼ 1 and a quadratic nonlinear term a2
with no cubic term (a3 ¼ 0). The value of a2 is varied between –0.l and 0.4 including a2 ¼ 0: All of
the parametric studies presented in Section 3.1 were carried out for the case of quadratic
nonlinearities as well. As the influence of a2 is quite similar to a3; at least qualitatively, only a
representative example is shown here in Fig. 13. This figure presents the combined effect of f 1 and
a2 on the response.
By comparing Figs. 3 and 12, several differences can be noted. (1) For softening cases

(a2 ¼ �0:1 versus a3 ¼ �0:1), the responses are quite different. The response curves for a2 ¼ �0:1
are much like extensions of those of the PL system in contrast to the erratic and mostly unstable
behavior for a3 ¼ �0:1: (2) For the hardening cases, the results for a2 ¼ 0:2 and 0.4 are quite
similar to corresponding cases in Fig. 4 for a3 ¼ 0:2 and 0.4 except the amplitudes increase
slightly. The changes near L ¼ 1 with a2 are not as significant as the corresponding changes
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Fig. 12. urms of an oscillator with a1 ¼ 1; a2 ¼ �0:1; 0.0, 0.2 and 0.4 and a3 ¼ 0; given f i ¼ 0 (iX2), w3 ¼ 0:3; z ¼ 0:05
for (a) f 1 ¼ 0:25; (b) f 1 ¼ 0:5; (c) f 1 ¼ 0:75; and (d) f 1 ¼ 1:0: (—) stable and (– –) unstable HBM solutions.
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with a3 in Fig. 3. This suggests that the effect of a2 on system response is not as significant as that
of a3 having the same values. (3) DSI motions are predicted for a2 ¼ �0:1 in Figs. 12(c,d), while
no DSI motions are evident in Fig. 3 for a3 ¼ �0:1:

3.3. a1 ¼ 1 and variable a2 and a3

As the final case, both quadratic and cubic nonlinearities are considered simultaneously. Four
sets of parameters are used: (1) a2 ¼ a3 ¼ �0:1; (2) a2 ¼ �0:1; a3 ¼ 0:2; (3) a2 ¼ 0:2; a3 ¼ �0:1;
and (4) a2 ¼ a3 ¼ 0:2: In Fig. 13, the response curves for these four cases are compared for
different f 1 values. The corresponding restoring functions g½uðtÞ� are plotted schematically in the
upper right corner for each case to demonstrate the shape of g½uðtÞ�: In Fig. 13(a), both
nonlinearities are of the softening type, which makes the system response very dramatic and quite
unstable. No stable period-1 solutions could be found for f 1 ¼ 1:0 within this frequency range for
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Fig. 13. urms of an oscillator with a1 ¼ 1; variable a2 and a3; given f i ¼ 0 (iX2), w3 ¼ 0:3; z ¼ 0:05; f 1 ¼ 0:25; 0.5, 0.75
and 1.0 for (a) a2 ¼ a3 ¼ �0:1; (b) a2 ¼ �0:1; a3 ¼ 0:2; (c) a2 ¼ 0:2; a3 ¼ �0:1; and (d) a2 ¼ a3 ¼ 0:2:
(—) stable and (– –) unstable HBM solutions.
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this case. However, if the signs of a2 and a3 are opposite, they tend to cancel each other.
In Fig. 13(c), the response curves are very similar to the results of the corresponding PL system,
and the amplitudes near primary and superharmonic resonances are similar to those of the PL
system for each f 1 value considered. In addition, a3 has a more dominant effect on system
response than a2: This can be confirmed by comparing the results in Figs. 13(b,d).
4. Conclusions

In this study, the dynamic behavior of a piecewise-nonlinear oscillator subjected to a preload
and combined parametric and external excitations was considered. The oscillator has a time-
varying stiffness as well as a restoring function formed by clearance and continuous nonlinearities.
Analytical solutions were obtained by employing the multi-term HBM in conjunction with the
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Newton–Raphson method, DFT, and the generic homotopy method. The stability of steady-state
response was determined by applying Floquet theory. The HBM solutions were verified by
comparing them to the direct numerical integration results. In addition, DFM was used to derive
single-term harmonic balance solutions for the same system. Several key characteristics of the
system were demonstrated through a detailed parametric study. Among these characteristics, the
effects of continuous nonlinearities are very sensitive to the value of mean load f 1: Both quadratic
and cubic nonlinearities are more influential for larger f 1 values. As a general trend, the
amplitudes of urms near the primary resonance peaks are decreased, and the resonance peaks are
shifted to high frequencies with increases of the values of a2 and a3: In the presence of a
parametric excitation of harmonic order k; a primary resonance at L ¼ 1=k is obtained as well as
a sizable superharmonic resonance at L ¼ 1=ð2kÞ: For a case of external excitation f ðtÞ only,
superharmonic resonances appear only when the ratio of alternating component to mean load
f i=f 1 is quite large. When both internal and external excitations act simultaneously, they appear
to cancel each other when two excitations are in phase and of the same fundamental frequency,
and add to each other when they are 180 1 out of phase. Moreover, when wi ¼ f i=f 1; urms ¼ 0; and
u1 remains constant regardless of the values of a2; a3 and L: While both SSI and DSI motions are
predicted for a2X0 and a3X0; DSI motions are not common for a3o0: Finally, the overall impact
of quadratic nonlinearity on the system response seems to be less significant than that of a cubic
nonlinearity.
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